
Journal of Approximation Theory 97, 311�333 (1999)

Generalised sk-Spline Interpolation on
Compact Abelian Groups

J. Levesley and A. K. Kushpel

Department of Mathematics and Computer Science, University of Leicester, University Road,
Leicester LE1 7RH, England

Communicated by Robert Schaback

Received July 1, 1997; accepted in revised form March 17, 1998

The notion of sk-spline is generalised to arbitrary compact Abelian groups.
A class of conditionally positive definite kernels on the group is identified, and a
subclass corresponding to the generalised sk-spline is used for constructing inter-
polants, on scattered data, to continuous functions on the group. The special case
of d-dimensional torus is considered and convergence rates are proved when the
kernel is a product of one-dimensional kernels, and the data are gridded. � 1999
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1. INTRODUCTION

The use of conditionally positive definite functions has recently received
a lot of attention in the literature of radial basis function approximation;
see, for example, Micchelli [17], Madych and Nelson [15, 16], Narcowich
and Ward [23], Sun [26], Wu and Schaback [29], and Xu and Cheney
[30]. In this article we apply some of the ideas in this literature to
approximation on compact Abelian groups using strictly conditionally
positive definite functions of order one. In Gutzmer [7], techniques for the
construction of interpolants on compact groups using positive definite
functions are discussed, but without analysis of errors. Here we give error
estimates, for interpolation on gridded data, for functions in Sobolev
classes, sets of infinitely differentiable functions, analytic functions, and
entire functions.

The motivation for this lies in the desire to generalise the notion of
sk-spline, used for periodic approximation, to approximation on Td, the
d-dimensional torus. Given a 2?-periodic continuous function k and
[x1 , x2 , ..., xn]�[0, 2?), an sk-spline is one of the form

sk(x)=c0+ :
n

i=1

cik(x&xi), (1)
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where �n
i=1 ci=0. This is how interpolants are constructed using condi-

tionally positive definite functions of order one; see [29].
The sk-spline is a recent generalisation of the more familiar polynomial

splines (which are realised when k is a Bernoulli monospline of an
appropriate degree) and have proved effective for computing the n-widths
of certain convolution classes of functions [9, 10]. The construction in (1)
has been used by many authors in the case when the kernel k possesses
some sign regularity properties (like cyclic variation diminishing), as well
as using Taylor's Theorem to provide some error estimates [4, 19, 20, 21,
22, 24, 27]. We emphasise that we neither impose any such sign regularity
condition nor use any special properties of the polynomials in order to
establish our results.

Not only are sk-splines a generalization of polynomial splines but are
also a generalisation of the L-splines of Micchelli [18]. Also, as Anselone
and Laurent [2] and Atteia [3], we show that, in a more general setting,
a subset of sk-spline interpolants arise as a result of minimising some semi-
norm, extending the results of Holladay [8] and Ahlberg, Nielson, and
Walsh [1]. In Dyn et al. [5] the semi-norm minimisation is exploited, as
in the Euclidean case, to produce pointwise error estimates for Hermite
interpolation of functions in L2 Sobolev spaces on arbitrary manifolds. In
the case of the d-dimensional torus they specialise their results to produce
error estimates, for the case of interpolation, of order n&(r&1)�d, where r is
the Sobolev space smoothness. We employ a different approach and obtain
error estimates for functions in a wider range of Sobolev spaces, as well as
for sets of functions of infinite differentiability, measured in other norms. In
the case of uniform estimates for functions in L2 Sobolev spaces we obtain
an error estimate of the form n&(r&1�2)�d.

The main advantage in using sk-splines as opposed to polynomial splines is
that if the kernel of the sk-spline is infinitely smooth then the interpolation
process converges at a rate governed by the underlying smoothness of the data.
A similar phenomenon is present for radial basis approximation using, for
example, the multiquadric functions (see [16]). A fixed degree of polynomial
spline has a maximumconvergencerate regardless of the smoothness of the data.

The purpose of this paper is threefold: to prove that approximation from
the sk-spline subspace of the continuous functions on a compact Abelian
group is possible, to give sufficient conditions on the kernel k for existence
of sk-spline interpolants, and to provide error estimates in the special case
of the torus. The results of Section 2 comprise some generalisations of
classical results of harmonic analysis.

The paper is organised as follows.

Section 2.1. We introduce some elementary ideas from Fourier
analysis on a compact Abelian group G. We consider the density, in
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C(G), of a particular set of functions specified by their generalised Fourier
series.

Section 2.2. We give conditions for the density of a more general
class of functions than sk-splines, and introduce the appropriate notion of
conditional positive definiteness.

Section 2.3. sk-splines are introduced as a special case of the func-
tions from the previous section, and the well-posedness of the interpolation
problem is proved.

Section 2.4. We generalise the result of Holladay by considering
certain linear operators on a particular subset of the dual of the continuous
functions.

Section 3. We consider the particular example of the d-dimensional
torus Td. We prove error estimates for interpolants, on gridded data, using
a generalised sk-spline with kernel k, a product of one dimensional strictly
conditionally positive definite kernels. The functions we interpolate are in the
convolution class k V Up , where Up is the unit ball of Lp . In some cases the
error estimates we obtain realise the n-width and are in that sense optimal.

2. COMPACT ABELIAN GROUPS

2.1. Preliminaries

In this section we will introduce some results from the theory of abstract
harmonic analysis. For a deeper exploration of the subject see Rudin [25]
or Loomis [14].

Suppose a set G has both a group structure and a topological structure,
and the group multiplication with a fixed element of the group is con-
tinuous with respect to the topology. Then G is a topological group.
Furthermore, if the group is compact in this topology and the multiplica-
tion is commutative then we have a compact Abelian group. There is a
unique translation invariant measure on G for which the measure of G is 1.
This is the normalised Haar measure +.

A character of the group G is a continuous homomorphism from G onto
the unit circle, and with pointwise multiplication, the set of characters is a
group G� , which we will call the dual group of G. We call the identity
element in this group ê. In what follows a crucial result is that if G is
compact, G� is discrete; see [25, p. 9]

To an element in f # L1(G), the integrable functions on G, we can
associate a Fourier series

ft :
/ # G�

://,
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where

:/=|
G

f (x) /(x) d+(x).

To continue we require some elementary results about G� , which may be
found in [25, pp. 7�10].

Lemma 1.

(a) The orthogonality relation:

|
G

/(x) d+(x)={1,
0,

/=ê,
otherwise.

(b) If e is the identity in G then /(e)=1 for all / # G� .
(c) For all x # G and / # G� ,

/(x&1)=(/(x))&1=/&1(x)=/(x).

(d) The convolution theorem: Let f, g # L1(G), with ft�/ # G� :/ /, and
g # �/ # G� ;//. Then f V g # L1(G) and

f V gt :
/ # G�

:/ ;/ /.

2.2. G0k-Splines

We begin with the definition of a more general class of functions than the
sk-splines, which we will introduce in the next section as a special case.

Definition 2. Let G� 0 /G� be finite, and k be a fixed continuous func-
tion. Then a G0k-spline is a function of the form

f + :
n

i=1

cik( } x&1
i ),

for some n # N, and x1 , x2 , ..., xn # G, where f is in the linear span of G� 0 ,
and

:
n

i=1

ci/0(xi)=0, for all /0 # G� 0 .

In this section we want to investigate the density of G0k-splines in C(G).
To do this we need a preliminary definition and a theorem, the proof of
which can be found in [14].
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Definition 3. A subset A of a linear space X is fundamental if the
linear span of A is dense in X.

Theorem 4. The set of characters is fundamental in C(G).

We now state and prove the main result of this section.

Theorem 5. Let G be a compact, Abelian, metric group, with metric \,
G� 0 �G� be finite and [/: /� # G� 0]=G� 0 . Furthermore, let the continuous func-
tion k=�/ # G� "G� 0

:// in L2(G), where :/ {0 for any / # G� "G� 0 . Then, the set
of G0k-splines is fundamental in C(G).

Proof. Using Theorem 4 we need only show that we can approximate
any character uniformly by a function of the given form. It is clear that we
can approximate any character in / # G� 0 by setting f =/ and ci=0 for
all i. So, it remains only to show that we can uniformly approximate any
character / # G� "G� 0 in the required way.

Using Lemma 1 (d) we can write, for any / # G� "G� 0 ,

/=
1

:/
k V /

=
1

:/
|

G
k( } y&1) /( y) d+( y).

To prove the result we need to find an integration rule which converges for
continuous functions and preserves the orthogonality of the characters.
This rule will converge pointwise for each x in the last equation above,
which will be uniform because G is compact. If G is a torus the characters
are complex exponentials. Thus, a tensor product of rectangle rules with
sufficient points will preserve the orthogonality of characters.

Let /1 , /2 , ..., /l be an enumeration of G� 0 and let /l+1=/. By con-
sidering the homomorphism T: G � Tl+1 given by T(g)=�l+1

j=1 /i (g) we
see that G can be decomposed into the sum of a subgroup of Tl+1 and
K=ker (T ). As we just observed, the result on the torus is trivial; let the
weights and abscissae of the rule on G�K be ;i and yi , i # I1 , where I1 is
finite.

Because K is the kernel of T, it is in the kernel of each /i , i=1, 2, ...,
l+1. Hence, any integration rule on K which is exact for constants will
preserve the orthogonality of the characters, as the characters are all con-
stant on K. Thus, we choose a partition for K=�i # I2

0i , where I2 is finite,
with I1 & I2=<, diam(0i)�=, and +(0i)=;i (=), i # I2 . Then, if yi # 0i ,
i # I2 ,
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}|K
f ( y) d+( y)& :

i # I

;i f ( yi) }= } :
i # I

|
0i

( f ( y)& f ( yi)) d+( y) }
� :

i # I
|

0i

| f ( y)& f ( yi) | d+( y)

�|( f, =)

whenever the modulus of continuity |( f, =)=sup\(x, y)�= | f (x)& f ( y)| is
finite. If f is continuous on G, |( f, =) � 0 as = � 0, so that the integration
rule converges for continuous f.

If now we set I=I1 _ I2 , and ci=;i �://( y i), i # I, then, for any
/0 # G� 0 .

:
i # I

ci /0( yi)=
1
:/

:
i # I

;i/( yi) /0( yi)

=|
G

//0 d+

=0,

since /0 {/� due to the fact that the G� 0 is closed under conjugation. Also,
because the integration rule converges for continuous functions,

/(x)=
1
:/

|
G

k(xy&1) /( y) d+( y)

r
1
:/

:
i # I

;i i/( yi) k(xy&1
i )

= :
i # I

ci k(xy&1
i ). K

We now introduce the set of kernels which we will use to construct our
interpolants.

Definition 6. Given a subset G� 0 �G� , a continuous function g is condi-
tionally positive definite with respect to G� 0 , which we abbreviate to
G� 0&CPD if, for any n # N, and distinct x1 , x2 , ..., xn # G,

:
n

i, j=1

ci c� jg(x ix&1
j )�0,
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for any 0{c # Cn satisfying

:
n

i=1

ci/(xi)=0, for every / # G� 0 .

If there is a strict inequality in the quadratic form above then we say
that g is strictly conditionally positive definite with respect to G� 0 , or g is
G� 0 -SCPD. If G� 0 is the empty set then g is (strictly) positive definite (S)PD.

Example 7. A simple example of a positive definite function , V ,� , with
, # L2(G), where ,� (x)=,� (x&1). For

:
n

i, j=1

c ic� j, V ,� (xix&1
j )

= :
n

i, j=1

cic� j |
G

,(x ix&1
j y&1) ,� ( y) d+( y)

= :
n

i, j=1

cic� j |
G

,(x i y&1) ,� (xj y&1) d+( y)

=|
G } :

n

i=1

ci,(xi y&1)}
2

d+( y)�0,

where in the penultimate step above we have used the fact that the Haar
measure is invariant under translation.

In the next theorem we characterise a set of G� 0 -SCPD functions.

Theorem 8. Let G� 0 �G� . Then, if

g= :
/ # G� "G� 0

://,

with :/>0 and

:
/ # G� "G� 0

:1�2
/ <�,

then g is G� 0-SCPD.

Proof. Using Lemma 1(d), we can write g=, V ,� , where

,= :
/ # G� "G� 0

;//,
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setting ;/=:1�2
/ , and then

:
/ # G� "G� 0

|;/ |<�. (2)

Now, suppose that, given n # N and x1 , x2 , ..., xn # G,

:
n

i=1

ci/(xi)=0, for every / # G� 0 , (3)

and

:
n

i, j=1

ci c� jg(xix&1
j )=|

G } :
n

i=1

ci,(xi y&1)}
2

d+( y)

=0.

The computational step above follows exactly the same as in Example 7.
For this to be true,

:
n

i=1

ci,(xiy)=0, for all y # G,

because ,, and hence the above sum, is continuous. Now,

:
n

i=1

ci,(x iy)= :
n

i=1

ci :
/ # G� "G� 0

;//(xiy)

= :
/ # G� "G� 0

#//( y),

with

#/=;/ :
n

i=1

ci/(x i),

where we have used the multiplicative property of the characters and
changed the order of summation, justified because of (2). Thus, #/ is zero,
for each / # G� �G� 0 , which, in turn implies that

:
n

i=1

ci/(xi)=0, for every / # G� �G� 0 ,

as ;/ {0 for any / # G� �G� 0 . Putting this together with (3) we see that

:
n

i=1

ci/(xi)=0, for every / # G� .
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Now, the characters are fundamental in C(G) so that the linear func-
tional

l( f )= :
n

i=1

ci f (xi), f # C(G),

annihilates a dense subset of C(G) and hence the whole of C(G). Thus l=0
and the result is proved. K

2.3. sk-Splines

We now-specialise to sk-splines, and prove that the interpolation
problem for sk-splines is uniquely solvable if the kernel k is [ê]-SCPD.

Definition 9. An sk-spline is an G0k-spline with G0=[e].

Remarks 10. If we set G� 0=[ê] in the Theorem 5 we see that sk-splines
are dense in C(G) as long as all of the coefficients, except possibly that for
ê, in the Fourier series for k are non-zero.

Theorem 11. Let k be [ê]-SCPD. Then, given n # N, and arbitrary data
v1 , v2 , ..., vn # C, there exist constants c0 , c1 , ..., cn , satisfying

:
n

i=1

ci=0,

such that

c0+ :
n

j=1

ci k(xi x&1
j )=vi , i=1, 2, ..., n.

Proof. Let u=[1, 1, ..., 1]T, c=[c1 , c2 , ..., cn]T, v=[v1 , v2 , ..., vn]T, and
Kij=k(x ix&1

j ), i, j=1, 2, ..., n. Then the proof of the theorem amounts to
the proof of the nonsingularity of the matrix

_u
0

K
uT& .

This in turn is the same as proving that there exists no non-trivial solution
to the system of equations

c0u+Kc=0, (4)

uTc=0. (5)
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If the above equations hold then, using (5), we have, premultiplying (4)
by cT,

cTKc=0,

and because k is [ê]-SCPD, it must be that c=0. Substituting this into (4)
gives c0=0, and the result follows. K

Remarks 12. The above proof will be familiar to the reader conversant
with the solvability of the interpolation problem with the norm or multi-
quadric function; see Light and Wayne [13].

2.4. Semi-norm Minimization
In this section we shall generalise the result of Holladay [8] which tells

us that the periodic cubic spline is the minimiser, over all periodic inter-
polants, of the semi-norm

\|
2?

0 \d 2g
dx2+

2

dx+
1�2

.

To do this we need to introduce generalised functions on the group G, and
we do this, in the spirit of Gorbacuk and Gorbacuk [6], via the character
group.

Let (G� ) denote the linear span of G� . A sequence fm � f as m � � in
(G� ) if and only if :/( fm) � :/( f ) as m � �, for all / # G� .

Definition 13. A generalised function is a continuous linear functional
on (G� ) . We say that a sequence of generalised functions fm converges to
a generalised function f if and only if fm(/) � f (/) as m � � for all / # G� .

We can associate with any generalised function f a Fourier series

ft :
/ # G�

://,

where :/= f (/). For example, $, the unit in the convolution ring L1(G),
has Fourier series

$t :
/ # G�

/.

To prove the result that follows we need a continuous $ sequence

$m= :
/ # G� m

/,
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where [G� m]m # N is a sequence of finite subsets of G� satisfying

G� m �G� m+1 , m # N, (6)

.
�

m=1

G� m=G� , (7)

where we recall that G� is countable.

Theorem 14. Let (C(G))$ be the dual space of C(G), and B: L2(g) �
L2(G) be a continuous linear operator from (C(G))$ to C(G). Let B* be the
adjoint of B. Suppose also that (B*)&1 exists and has kernel (G� 0) for some
G� 0 �G� . Furthermore, suppose that, given [xi]1�i�n �G and complex data
[vi]1�i�n ,

V={ f # B*(L2(G)) : f # :
/ # G�

:/( f ) / and f (xi)=vi , 1�i�n= .

Then, if there is an element of V of the form

g(x)= g0(x)+B*B \ :
n

i=1

ci $( } x&1
i )+ , g0 # (G� 0) ,

then g minimises, over all f # V, the semi-norm

\|G
|(B*)&1 g(x)|2 d+(x)+

1�2

.

Proof. Let f # V. It is easy to show that

|
G

|(B*)&1 f (x)|2 d+(x)

=|
G

|(B*)&1 g(x)|2 d+(x)+|
G

|(B*)&1[ f &g](x)|2 d+(x)

+2R \|G
(B*)&1 g(x)(B*)&1[ f &g](x) d+(x)+ ,

and the result follows if the last term in the right hand side above is zero.
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Now,

|
G

(B*)&1 g(x)(B*)&1[ f &g](x) d+(x)

=|
G{(B*)&1[ g0(x)+B*B _ :

n

i=1

ci $(xx&1
i )&= (B*)&1[ f &g](x) d+(x)

=|
G

B _ :
n

i=1

ci$(xx&1
i )& (B*)&1[ f &g](x) d+(x)

as g0 # ker (B*)&1. Let [$m]m # N be a delta sequence with respect to the
sequence [G� m]m # N satisfying equations (6) and (7) above. Then, because
B is continuous,

|
G

(B*)&1 g(x)(B*)&1[ f & g](x) d+(x)

= lim
m � � |

G
B _ :

n

i=1

ci$m(xx&1
i )& (B*)&1[ f &g](x) d+(x)

= lim
m � � |

G
:
n

i=1

ci :
/ # G� m

/(xx&1
i )( f (x)& g(x)) d+(x)

= lim
m � � |

G
:
n

i=1

ci :
/ # G� m

/(x) /(x&1
i )( f (x)& g(x)) d+(x)

= lim
m � � |

G
:
n

i=1

ci :
/ # G� m

(:/( f� )&:/(g� )) /(xi)

= :
n

i=1

ci ( f (xi)& g(x i))

=0.

as f and g interpolate the same data, where, in the above, we have used the
facts that /(x&1)=/(x) (Lemma 1(c)) and f and g are equal to their
Fourier series. K

Example 15. In this example we see that the result of Holladay is a
special case of the above, when G is the unit circle. Let

Dr(x)= :
�

l=1

l&r cos(lx&r?�2),
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be the degree r Bernoulli monospline. For g # L2(G) let

Bg=D2 V g.

Then B is self adjoint, and continuous from (C(G))$ � C(G), as it is (up to
a constant) the same as two integrations. Thus (B*)&1 is just two differen-
tiations, and

V={ f :
d 2f
dx2 # L2(G)= .

Now, B*B=D4 , so that the interpolants we are considering are of the form
c0+D4 V (�n

i=1 c i$( } &x i))=c0+�n
i=1 ciD4(x&xi) with 0�x1<x2<

} } } xn<2?. It is easy to show that all periodic cubic splines can be written
in this form. So, the above theorem says that the cubic spline interpolant
to given data at [xi]1�i�n is the minimiser over all interpolants with
square integrable second derivatives, of the semi-norm

\|
2?

0
( f (2)(x))2 dx+

1�2

.

3. INTERPOLATION ON THE TORUS

Let Td=[0, 2?)d be the d-dimensional torus. We shall be interpolating
functions in convolution classes

k V Up=[ f =k V , : , # Up],

where

Up=Up(Td )=[, # Lp(Td ) : &,&p�1],

and

k(x)= `
d

m=1

km(xm), x=(x1 , x2 , ..., xd),

is a product of one dimensional kernels. Thus, by choosing each km to have
a certain amount of smoothness, we can approximate functions which have
different amounts of smoothness in different directions.

If we define az , z=(z1 , z2 , ..., zd) # Zd, by

az={0,
2&d >d

m=1 a |zm |, m ,
zm=0, for any 1�m�d,
otherwise,
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then we can write k(x)=�z # Zd azeizx, where zx denotes the usual inner
product of z and x.

In the remainder of this paper C will denote a generic constant whose
value is not necessarily the same at each occurrence.

Before we consider the construction of the sk-spline interpolant in more
detail we give some examples in order to clarify the sorts of functions we
are interpolating.

Example 16. Suppose that

km(xm)= :
�

l=1

al, m cos \lxm&
;m?

2 + .

Then, for particular choices of the al, m and the constant ;m we obtain the
following concrete examples.

1. al, m=l&rm, ;m=rm # N0 gives us a Bernoulli monospline in each
direction, and in this case k V Up is the unisotropic Sobolev class of func-
tions whose r=(r1 , r2 , ..., rd)th derivative is in Up .

2. al, m=exp(&:m lrm
), with :m>0, 0<rm<1, and ;m=0. The con-

volution class in this case contains infinitely differentiable functions.

3. al, m=2(\m)l, with 0<\m<1, and ;m=0, is (up to an added con-
stant) the Poisson kernel and the convolution class consists of functions in
which are analytic in each of the coordinate directions.

4. al, m=exp(&:m lrm), with :m>0, rm>1, and ;m=0, and the
resulting convolution is an entire function of xm .

In what follows we will be investigating the rate of convergence of inter-
polants (which we will describe below) on the grid 2n with points

xj=(xj, 1 , xj, 2 , ..., xj, d), j�2n

where xj, m= jm?�nm , and j and n are multi-indices.
In [9], for the case d=1, interpolants of the form

sk(x)=c0+ :
2n

i=1

cjk(x&xj)

are examined where �2n
i=1 ci=0 and k(x)=�l�1 al cos lx, with al>

al+1>0 for all l # N. These form a subset of the sk-splines. Writing
cos lx=(eilx+e&ilx)�2 and noting that the dual group of T is [eilx, l # Z],
we see by Theorem 8 that k is [ê]-SCPD, and hence, by Theorem 11, that,
for each m, there is a unique sk-spline interpolant to arbitrary data on
[xj, m : 1� jm�2nm].
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Let

sk� m(xm)={
1, xm=0,

0, xm=
j?
nm

, j=1, 2, ..., 2nm&1,

be the cardinal sk-spline associated with the mth coordinate. We construct
a cardinal generalised sk-spline on the grid 2n with products of such one
dimensional cardinal splines:

sk� (x)= `
d

m=1

sk� m(xm).

So, using the shifted cardinal sk-spline

sk� (x&xj)= `
d

m=1

sk� m(xm&xj, m),

where xj, m is the mth component of xj , we can write the generalised
sk-spline interpolant to f # k V Up in the form

sk( f, 2n)(x)= :
1�j�2n

f (xj) sk� (x&x j),

where 1=(1, 1, ..., 1).
In order to prove our main theorem, Theorem 21, we need some

preliminary lemmas.

Lemma 17. Let k(x)=��
l=1 al cos(lx) uniformly, with al>al+1>0

for all l # N. Then,

(a) for any n # N, the cardinal sk-spline at l?�n, l=0, 1, ..., 2n&1,
exists and can be written in the form

sk(x)=
1

2n
+

1
2n

:
2n&1

l=1

\l(x)
\l(0)

,

where \l(x)=R*l(x), and

*l(x)= :
2n

j=1

e i?jl�n k \x&
j?
n + ,

(b) \l(x)= :
�

m=1

[a2mn&l cos((2mn&l) x)+a2mn+l cos((2mn+l) x)]

+al cos(lx),
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(c) \l(x)=\2n&l(x), 1�l�n,

(d) if _l(x)=I*l(x) then _l(x)=&_2n&l(x),

(e) for all l # N,

:
2n

j=1

ei?lj �n sk \x&
j?
n +=

*l(x)
\l(0)

.

Proof. For proofs of (a), (b), (c), and (d) see [9, 10]. We prove only
the real part of (e) here. The imaginary part follows in the same way. Set
xj= j?�n, j=0, 1, ..., 2n&1. Note that we need only prove the result for
0� j�2n&1 because both the left hand side and right hand side in (e) are
invariant if j is altered by a multiple of 2n.

A simple direct calculation shows that

\l(x&xj)=\l(x) cos(lxj)+_l(x) sin(lx j).

Then, using part (a) of this lemma we have, for l # N,

:
2n

j=1

cos(lxj) sk(x&xj)

= :
2n

j=1

cos(lx j) { 1
2n

+
1

2n
:

2n&1

k=1

\k(x&x l)
\k(0) =

=
1
2n

:
2n

j=1

cos(lxj)+
1

2n
:

2n&1

k=1

(\k(0))&1

_{\k(x) :
2n

j=1

cos(lx j) cos(kxj)+_k(x) :
2n

j=1

cos(lx j) sin(kxj)= .

Now, using the discrete orthogonality relations

1, k#\l#n or 0 mod(2n),

:
2n

j=1

cos(lxj) cos(kxj)={ 1
2 , k#\l�n or 0 mod(2n),

0, otherwise,

:
2n

j=1

cos(lxj) sin(kx j)=0, for all k, l,

we have, in mind of (d) above, that

:
2n

j=1

cos(lxj) sk(x&xj)=
\l(x)
\l(0)

, 1�l�2n&1,

and the result is proved. K
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Lemma 18. Let z # Zd. Then, for any x # Td,

}eizx& :
j�2n

eizxj sk(x&xj)}�(2?)d&1 :
d

m=1

|%m
nm , zm

(xm)|,

where, for r # N and s # Z,

%m
r, s(t)=eist& :

2r

i=1

ei?ls�rskm \t&
l?
r + .

Proof. First,

:
j�2n

eizxj sk(x&xj)= :
j�2n

eizxj `
d

m=1

skm(xm&x j, m)

= :
j�2n

`
d

m=1

eizmxj, m skm(xm&x j, m) (8)

= `
d

m=1

:
j�2n

eizmxj, m skm(xm&xj, m).

Now, it is easy to show by induction that

`
d

m=1

y1, m& `
d

m=1

y2, m= :
d

m=1

( y1, m& y2, m) `
m&1

r=1

y2, r `
d

r=m+1

y1, r ,

so that, if 0� y1, m , y2, m<2?, m=1, 2, ..., d,

} `
d

m=1

y1, m& `
d

m=1

y2, m }�(2?)d&1 :
d

m=1

| y1, m& y2, m |.

Thus, using the last equation and (8), we have,

}e izx& :
j�2n

eizxj sk(x&x)� )}
= } `

d

m=1

eizm xm& `
d

m=1

:
jm�2nm

eizm xj, m sk(xm&xj, m)}
�(2?)d&1 :

d

m=1 }e
izm xm& :

jm�2nm

eizm xj, mskm(xm&x j, m)}
=(2?)d&1 :

d

m=1

|%m
nm , zm

(xm)|. K
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Lemma 19. Let k(x)=��
l=1 al cos lx, where al>al+1>0 for all l # N.

Further, suppose that for 1�|l|�n&1,

:
�

m=1

a2mn&|l|<Ca2n&|l| , (9)

for every choice of n # N, where C is independent of n and l. Then,

|%n, l(x)|= }eilx& :
2n

j=1

ei?lj�nsk \x&
j?
n + }

�{8C
a2n&|l|

a |l|

,

4,

1�|l|�n&1,

|l|�n.

Proof. Let

+n, l(x)=cos(lx)& :
2n

j=1

cos \j?
b + sk \x&

j?
n + ,

be the real part of %n, l . We prove the result for +n, l . The proof for the
imaginary part of %n, l follows in the same way. Using Lemma 17(b) and
(e) we have

+n, l(x)=cos(lx)&
\l(x)
\l(0)

=cos(lx)&
s(x)+a |l| cos(lx)

s(0)+a |l|

,

where

s(x)= :
�

m=1

[a2mn&l cos((2mn&l) x)+a2mn+l cos((2mn+l) x)].

Hence

|+n, l(x)|= } s(0) cos(lx)&s(x)
s(0)+a |l| }

�2,

for all l # Z, because s(x)�s(0) for all x # [0, 2?), and a |l|>0. However,
if 1�|l|�n&1 we can make the tighter bound,
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|+n, l(x)|�
2s(0)
a |l|

�4
��

m=1 a2mn&|l|

a |l|

�4
Ca2n&|l|

a |l|

,

using (9), where the penultimate step follows because a2mn&|l|>
a2mn+|l| . K

Lemma 20. For p�1,

:
z # Zd

a p
z \ :

d

m=1

|%m
nm , zm

(xm)|+
p

�C sup
1�m�d

:
l�nm

a p
l, m .

Proof. We proceed by induction on the dimension d. If d=1,

:
z # Z

a p
z |%n, z1

(x)| p

= :
0<|l|<n

a p
|l| , 1 |%n, l(x)| p+ :

|l|�n

a p
|l| , 1 |%n, l(x)| p

�C \ :
0<|l|<n

a p
|l| , 1

a p
2n&|l|, 1

a p
|l|, 1

+ :
l�n

a p
l, 1+

�C :
l�n

a p
l, 1 ,

where in the last two steps above we have used Lemma 19 and the fact that
ak, 1 is a decreasing positive sequence.

Now, using Minkowski's inequality, we have

:
z # Zd

a p
z \ :

d

m=1

|%nm , zm
(xm)|+

p

�C :
l # Z

a p
|l| , d :

z # Zd&1

a p
z \ :

d&1

m=1

|%m
nm , zm

(xm)|+
p

+C :
l # Zd&1

a p
z :

l # Z

a p
|l| , d |%d

nd , l(xd)| p

�C sup
1�m�d&1

:
l�nm

a p
l, m+C :

l�nd

a p
d, l

�C sup
1�m�d

:
l�nm

a p
l, m ,
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where the penultimate step follows by the inductive hypothesis and because
the sequence [az]z # Zd is absolutely summable. K

Theorem 21. Let k # C(Td ) have the absolutely convergent Fourier
series

k(x)= `
d

m=1

km(xm)= `
d

m=1

:
�

l=1

al, m cos(lxm),

where al, m>al+1, m>0, for all l # N, 1�m�d, and, for |l|�nm ,

:
�

s=1

a2nm s&l, m�Ca2nm&l, m ,

where C is independent of m, l, and n. Then, for 1�p�2�q��, with
p&1&q&1�2&1,

sup
f # k V Up

& f&sk( f, 2n)&q� max
1�m�d \ :

l�nm

(al, m)qp(q& p)&1+
p&1&q&1

.

Proof. Using the fact that f # k V Up , we can write, for some , # Up ,

| f (x)&sk( f, $n)(x)|

= }|Td
k(x&y) ,(y) dy&|

Td { :
j�2n

k(xj&y) sk� (x&x j)= ,(y) dy}
�&,&p&k(x& } )& :

j�2n

k(xj& } ) sk� (x&x j)&p$ ,

where 1�p+1�p$=1, using Ho� lder's inequality.
Because 1�p�2, p$�2, and we can use the Hausdorff�Young

Inequality (see [31]) to show that

&k(x& } )& :
j�2n

k(xj& } ) sk� (x&xj)&p$�\ :
z # Zd

|bz | p+
1�p

,

where

bz=(2?)&d |
Td

(k(x&y)& :
j�2n

k(x j&y) sk� (x&x j)) eizy dy

=az \eizx& :
j�2n

eizxj sk� (x&xj)+ , z # Zd,
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using the fact that the integral above is a sum of convolutions with
exponential functions. Thus, using Lemma 20, we see that

&k(x& } )& :
j�2n

k(xj& } ) sk� (x&xj)&p$

�\ :
z # Zd

a p
j \ :

d

m=1

|%m
nm , zm

(xm)|+
p

+
1�p

�C sup
1�m�d \ :

l�nm

a p
l, m+

1�p

.

So, if we define the operator T: Lp � L� by

T,(x)=|
Td

k(x&y) ,(y) dy&|
Td { :

j�2n

k(xj&y) sk� (x&x j)= ,(y) dy,

then T is bounded and

&T&p, ��C sup
1�m�d \ :

l�nm

a p
l, m+

1�p

.

Using duality arguments (see for example Tikhomirov [28]) we also have
T: L1 � Lp$ bounded with

&T&1, p$�C sup
1�m�d \ :

l�nm

a p
l, m+

1�p

.

Applying the Riesz�Thorin Interpolation Theorem [31], for 0<t<1, if

1
pt

=1&t+
1
p

and
1
qt=

1&t
p$

,

then T: Lpt
� Lqt

is bounded and

&T&pt , qt
�C sup

1�m�d \ :
l�nm

a p
l, m +

1�p

.

It is easy to show that p&1
t &q&1

t = p&1�2&1. Hence, setting r= pt and
s=qt , if 1�r�2�s�� and r&1&s&1�2 then T: Lr � Ls is bounded
and

&T&r, s�C sup
1�m�d \ :

l�nm

asr(s&r)&1

l, m +
r&1&s&1

. K
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4. FINAL REMARKS

We conclude by noting that Theorem 21 includes approximation by
periodic splines as special cases of the general result. For some kernels
sk-spline approximation is the best possible approximation in the sense of
n-width. For example, if d=1 and al=e&:lr

, :>0 and r�1, then from
Theorem 21 it follows that

=n(k V U1 , L�) :=sup [& f&sk( f, 2n)&� : f # k V U1]

�Ce&:nr
,

as n � �. Hence, because Lp is continuously imbedded in Lq for 1�q�
p��, we have =n(k V Up , Lq)�Ce&:nr

, for any 1�p, q��. It is clear
that in this case the dimension of the sk-spline subspace is 2n. Let dn and
bn be the n-widths in the sense of Kolmogorov and Bernstein respectively,
and *n and ?n be, respectively, the linear and projective n-widths (for the
definitions of these see e.g. [24, 28]). Since the operator sk: f � sk( f, 2n),
is a linear projector (due to the uniqueness of the solution of the interpola-
tion problem) we have b2n�d2n�*2n�?2n�C=2n , where C3 does not
depend on n. Using the results of [11, 12], we have b2n(k V Up , Lq)�
Ce&:nr

, as n � �, for all 1�p, q��. So we see that sk-splines provide a
new example of extremal subspaces for k V Up in Lq , for all 1�p, q��.
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